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Abstract 
 

In the Empirical Mode Decomposition (EMD) for the Hilbert-Huang Transform (HHT),   

a nonlinear and nonstationary signal is adaptively decomposed by HHT into a series of Intrinsic 

Mode Functions (IMFs) with the lowest one as the trend. At each step of the EMD, the low-

frequency component is mainly determined by the average of upper envelope (consisting of local 

maxima) and lower envelopes (consisting of local minima). The high-frequency component is 

the deviation of the signal relative to the low-frequency component. The fact that no local 

maximum and minimum can be determined at the two end-points leads to detrend uncertainty, 

and in turn causes uncertainty in HHT. To reduce such uncertainty, the Hermitian polynomials 

are used to obtain the upper and lower envelopes with the first derivatives at the two end-points 

(qL, qR) as parameters, which are optimally determined on the base of minimum temporal 

variability of the low-frequency component in the each step of the decomposition. This well-

posed mathematical system is called the Derivative-optimized EMD (DEMD). With the DEMD, 

the end effect, and detrend uncertainty are drastically reduced, and scales are separated naturally 

without any a-priori subjective selection criterion.    

 

Keywords: Derivative-optimized empirical mode decompositions (DEMD); Hilbert-Huang 

transform (HHT), empirical mode decomposition (EMD); compact difference; Hermitian 

polynomials; intrinsic mode function (IMF); end effect; detrend uncertainty 

 
 
  



3 
 

1. Introduction  

Analysis of non-stationary time series in terms of nonlinear dynamics has drawn attention in 

many disciplines. Traditional methods, based on linear and stationary assumptions, are not 

suitable to analyze nonlinear and non-stationary data. The Hilbert-Huang transform (HHT) with 

adaptive empirical mode decomposition (EMD) [1] has been developed to analyze and 

nonlinear/non-stationary data.   Being adaptive means that the definition of basis functions has to 

be data-dependent, not a-priori defined basis functions (e.g., sinusoidal functions in 

linear/stationary time series analysis).   

The EMD decomposes a nonlinear and non-stationary signal into several intrinsic mode 

functions (IMFs) with the lowest varying IMF as the trend. Instantaneous frequency can be 

obtained by the Hilbert-Huang transform (HHT), and then the time-frequency-energy 

distribution characteristics.  An IMF is a function that must satisfy two conditions according to 

the EMD algorithm originally developed: (a) the difference between the number of local extrema 

and the number of zero-crossings must be zero or one; (b) the running mean value of the 

envelope defined by the local maxima and the envelope defined by the local minima is zero. 

Average of the upper and lower envelopes is treated as the low-frequency component. Difference 

of original signal versus the low-frequency component is regarded as the high-frequency 

component. Thus, accurate determination of two envelopes (i.e., one for local maxima and the 

other for local minima) is crucial for the success of the EMD in nonlinear/non-stationary data 

analysis. For a time series, the interior extrema are easily identified. However, these extrema are 

not enough to determine two well behaved fitting spline envelopes near the two end points since 

no local maximum/minimum can be identified there.  
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The easiest way is to treat the two end points as “frozen” points, i.e. the two end points 

are on both maximum and minimum envelopes.  Such a treatment makes the trend varying from 

the first end point to the last end point. Other practice is to extend data points beyond the end 

points so as to carry out the spline envelope fitting over and even beyond the existing data range; 

such as the wave extension method [1], local straight-line extension method [2],   mirror or anti-

mirror extension [3], and self-similarity [4],   overlapping sliding windows [5], and reject 

segments close to the endpoints [2]. While methods for extending data vary, the essence of these 

methods is to predict data beyond the end points, a dauntingly difficult procedure even for linear 

and stationary processes. Since the original signal only has the extrema in the data series, 

extending points beyond the two end points is not real. Therefore the data extension methods 

will not solve the problem no matter how much efforts have been spent. Besides, the end error 

may propagate from the ends to the interior of the data span that would cause severe 

deterioration of the IMFs obtained.  

More recent approach to deal with uncertainties in EMD is to use some post-processing 

with allowing the sum of all IMFs different from the original signal.  For instance, the signal is 

approximately represented by linear combination of original IMFs with weighting parameters, 

which are determined using the least square error relative to the original signal. This algorithm is 

called optimal EMD (OEMD) for one-dimensional weights and bidirectional optimal EMD 

(BOEMD) for two-dimensional weight matrix so as to facilitate approximation by window based 

filtering [6]. However, the OEMD and BOEMD are limited by their block based nature and use 

of adaptive filters was proposed [7]. The major weakness of this type of approach is the 

inequality between the sum of all IMFs and the original signal.  
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Questions arise: Can the upper and lower envelopes be determined in a systematic way? 

Can the local maximum and minimum be objectively and optimally determined at the two end 

points without using either extrapolation or interpolation (with extra point beyond the end 

point)? Can the sum of all IMFs always equal the original signal? These problems will be solved 

in this study through using the compact difference concepts [8], [9], [10] with the Hermitian 

polynomials. The upper and lower envelopes are obtained with the first derivatives at the two 

end-points (qL, qR) as parameters, which are optimally determined on the base of minimum 

temporal variability of the low-frequency component in the each step of the decomposition. This 

method, called the derivative-optimized EMD (DEMD), shows evident improvement in the 

EMD analysis.  The rest of the paper is organized as follows. Section-2 introduces the classical 

EMD for the Hilbert-Huang transform (HHT). Section-3 describes the construction of upper and 

lower envelopes using the Hermitian polynomials with the first derivatives at two end-points, qL 

(at t1) and qR (at tN),  as tuning parameters. Section 4 depicts optimal determination of (qL, qR) on 

the base of minimum temporal variability for the low-frequency component. Section 5 shows the 

evaluation. Section 6 presents the conclusions.  

2. HHT 

The HHT has two steps. First, the process of Empirical Mode Decomposition (EMD) 

reduces the time-series under analysis into components, known as Intrinsic Mode Functions 

(IMFs). Let a real signal x(t) be defined in the time interval [t1, tN] with two end points x1 = x(t1), 

and  xN = x(tN).  The EMD method is depicted as follows.  First, the local minima ( (min) ,jx  j = 1, 

2, …, J) and local maxima ( (max) ,kx   k = 1, 2, …, K)   of the signal x(ti) are identified with J = K or 

differing at most by one. Second, interpolation/extrapolation methods are used to determine the 
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upper and lower envelopes [u(t), l(t)] for t[t1, tN].  The mean of the two envelopes are 

calculated  

                                                   m(t) = [u(t) + l(t)]/2.                                                   (1) 

The mean is subtracted from the signal, providing the high-frequency component (Fig. 1) 

                                                     h(t) = x(t) - m(t),                                                      (2) 

which is then checked if it satisfies the above two conditions to be an IMF. If yes, it is 

considered as the first IMF and denoted 

                                                           c(t) = h(t).                                                        (3) 

It is subtracted from the original signal and the first residual, 

                                                          r(t) = x(t) -c(t) ,                                               (4) 

is taken as the new series to continue the decomposition. If h(t) is not an IMF, a procedure called 

“sifting process” is applied as many times as necessary to obtain an IMF. In the sifting process, 

h(t) is considered as the new data, and the same procedure applies. The IMFs are orthogonal, or 

almost orthogonal functions (mutually uncorrelated). This method does not require stationarity 

and linearity of the data and is especially suitable for nonstationary and nonlinear time series 

analysis. By construction, the number of extrema decreases when going from one residual to the 

next; the above algorithm ends when the residual has only one extrema, or is constant, and in this 

case no more IMF can be extracted; the complete decomposition is then achieved in a finite 

number of steps. The signal x(t) is finally written as  

                                                
1

( ) ( ) ( ),
P

p P
p

x t c t r t


                                             (5) 

where cp(t) is the p-th IMF and rP(t) is the residual, with  no any oscillation (i.e., non-existence 

of both maximum and minimum envelopes) and representing the trend.  

The Hilbert transform is conducted on each IMF cp(t),  
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                                                     ˆ( ) ( ) i ( ),p p pz t c t c t                                        (6)
                        

 

where  i 1   and ˆ ( )pc t  is the Hilbert transform of cp(t), represented by  

                                               
( )1

ˆ ( ) ,p
p

c s
c t CP ds

t s






                                       (7)

                        
 

where CP is the Cauchy principal value of the integral. The complex variable zp(t) in (6)  can be 

rewritten by 

                         ˆ( ) ( ) i ( ) ( ) exp[i ( )],p p p p pz t c t c t a t t                                      (8) 

to obtain the instantaneous amplitude ap(t) and the instantaneous phase function ( ),p t
 
and the 

instantaneous frequency is calculated by  

                                 
( ) ( ) / .p pt d t dt                                                            (9) 

Recently, it has been discovered that Hilbert Transform has severe limitation on the data for 

instantaneous frequency computation.  Different methods such as direct quadrature and 

normalized Hilbert transform were discussed in details [10, 11]. 

The Hilbert transform conducted on each IMF, cp(t), is called the Hilbert-Huang 

transform (HHT) [1]. The key issue in the EMD method for the HHT is the accurate 

determination of the upper and lower envelopes {up(t), lp(t)}. It is noted the values of {up(t), 

lp(t)} are only given at the local maxima ( (max) , 1,2,...,kx k K ), and local minima 

( (min) , 1,2,...,jx j J ), but   unknown   at the other time instances, especially at the two end points 

t1 and tN  (Fig. 1). This causes uncertain in determining cp(t) with three long recognized 

difficulties: end-point effect, and detrend uncertainty.  

3. Hermitian Polynomials for Upper and Lower Envelopes   
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Let the signal be discretized as {x(ti), i = 1, 2, …, N}, and let 1 2( , ,..., )M    represent 

occurrence time instances for either local maxima max max max
1 2( , ,..., ),Kt t t  or   local minima 

min min min
1 2( , ,..., )Jt t t ,  as shown in Fig. 2. Let em represent the local maxima (or minima) with qm its 

first derivative at the time instance ( 1,2,..., )m m M  , and let 1 ,   ( ) /m m m m mt         . A 

cubic spline 
 

             (10) 

 

is used to fill the gap between two neighboring local maxima (minima) between a
mt  and 1

a
mt   with 

given values of em and qm. This spline has the following features  

                                3 3 1 3 3 10 ,  (1) ,  0 / ,  1 /m m m mp e p e dp dt q dp dt q     .               (11) 

Here,   ϕ1(ξ),  ϕ2(ξ),  ϕ3(ξ),  ϕ4(ξ) are defined by [5]   

                          (12) 

Let the second derivative of e(t) be continuous at the each local maxima (or minima) time 

instance,  ( 2,3,..., 1)m m M   ,  

 

                                  

2 2 2 2
( 0) ( 0)/ | / |

m m
d e dt d e dt   .                                           (13)

 

Substitution of (10) into (13) leads to the compact difference schemes [8][9], 

   
  1

1 1 1 1 1
1

2 3 ,m m
m m m m m m m m m

m m

e e
q q q 

    


  
                

1m m me e e  
    (14)

 

2 3 2 3
1 2

2 3 3 2
3 4

( ) 1 3 2 ,   ( ) 3 2 ,

( ) 2 ,   ( ) .

       

        

    

    

         3 1 2 1 3 4 1 ,m m m m m mp e e q q              
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where m = 2, 3, …, M-1.  Since the value of e(t) is unknown at the two end-points (Fig. 2), the  

condition (14)  cannot be satisfied at the first and last local maxima (minima) time instances                        

1   and  .M    

  Values and derivatives of the local maximum (or minimum) at the two end-points, [e(t1), 

e(tN), e’(t1), e’(tN)],  are unknown. To reduce difficulty, only the first derivative at t1 (qL) along 

with both value and first derivative at τ1 (e1, q1) are used to fill the gap between t1 and τ1  with  a  

quadratic spline,  

              2 1 1 2 3 1 1 1 1( ) ( ) ( ) ( ) ,   ( ) / ,   L L L L Lp e q q t t t                   ,           (15) 

where 

                                 2 2
1 2 3( ) 1,   ( ) 1 2 / 2,   ( ) 1 / 2                              (16) 

This spline has the following features 

                                           2 1 2 2 1(1) ,   (0) / ,   (1) /Lp e dp dt q dp dt q   .                          (17) 

Continuity  of the second derivative (13) at the first local maximum (or minimum) time instance 

(t1) from (t1 – 0) [using the quadratic spline (15)] to (t1 + 0) [using the cubic spline (10)] leads to 
  

                 
  2 1

1 1 1 2
1

4 2 6 ,L L L L

e e
q q q


        

                                      (18) 

A similar algebraic equation is obtained for  the end-point tN,  

           
  1

1 1 1
1

2 4 6 ,M M
R M R M M M R R

M

e e
q q q 

  



       


 

R N Mt   
    

(19) 

where qR is the first derivative at the right end-point. Fig. 2 shows the variation of spline with 

different values of qL and qR.  For simplicity without loss generality, the upper and lower 
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envelopes are assumed to have the same first derivatives (qL, qR) at the two end-points (see Fig. 

3).  

4. Optimal Determination of (qL, qR)   

Equs.(14), (18), and (19) represent two sets of tri-diagonal linear equations for the first 

derivatives at the local maximum points of the upper envelope ( ,  1, 2,3,...,u
kq k K ) and the 

lower envelope ( ,  1, 2,3,...,l
jq j J ) as the dependent variables. Let the solutions for the upper 

envelope be given by 

                       ,           1, 2,3,...,u u u u
k k k L k Rq a b q c q k K                                        (20) 

and
 
the lower envelope be given by

                 
 

                            ,           1,2,3,...,l l l i
j j j L j Rq a b q c q i J    .                                      (21) 

At each step, the EMD is to decompose the signal into high and low frequency components 

with the average of upper and lower envelopes using Eq.(1), i.e.,  m(t),  as the low frequency 

component and the anomaly from the low frequency component as the high frequency 

component. Thus, the low frequency component, m(t), should have minimum temporal 

variability. Usually, small absolute values of derivatives mean small temporal variation. Since 

the first and second derivatives are already used in obtaining the upper and lower envelopes [see 

Eqs. (13), (14)], minimization of integrated squared values of the third derivatives,  

                                          
1 1

2 2
3 3

3 3
min

N Nt t

t t

d u d l
S dt dt

dt dt

   
     

   
  ,                       (22) 

is used to determine (qL, qR). Here, the third derivative is calculated numerically by  

   
    

3
1

1 1 13 23

1
6 2 ( , )u u u u u uk k

k k k k L k k R k L R
u u

k k k

u ud u
a a b b q c c q F q q

dt


  

                                       
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   
    

3
1

1 1 13 23

1
6 2 ( , )j j l l l l l l

j j j j L j j R j L R
l l

j j j

l ld l
a a b b q c c q G q q

dt


  

                   (23)                                      

which are constant in the time interval [tk, tk+1] for the upper envelope and the time interval [tj, 

tj+1] for the lower envelope since the cubic spline (10) and quadratic spline (15) are used, 

Substitution of (23) into (22) leads to  

                                       22

1 1

( , ) ( , )
K J

k L R k j L R j
k j

S F q q G q q
 

       .                            (24) 

The end-point derivatives (qL, qR) are determined by the minimization of S,   

                                            0,    0
L R

S S

q q

 
 

 
,                                                      (25) 

which  leads to the set of  linear algebraic equations:  

                                      

11 12 1

21 22 2

.L

R

A A q B

A A q B

     
     

                                                        (26) 

Here 

 
 

 
 

 
  

 
  

 
 

 
 

 
 

1 1

1 1 1 1

1 1

1

1

1 1 22

11 3 3
1 1

1 1

12 21 3 3
1 1

1 1 22

22 3 3
1 1

1

1 3
1

1 1

1 1

1 1

1
2

k j j

k k j j j

k j j

k

k

K J
u u l l
k

u l
k j

k j

K J
u u u u l l l l
k k j

u l
k j

k j

K J
u u l l
k

u l
k j

k j

uK
ku u

k
u

k
k

A b b b b

A A c c b b c c b b

A c c c c

u u
B b b

 

   

 





 

 

 

 

 

 





   
 

      
 

   
 


 



 

 

 

  
 

   

 
   

 
   

1

1 1 1

11

1 1 1 1

1

3
1

1 1

2 3 3
1 1

1
2

1 1
2 2

j

k k j j j j

jk

k k k j j j j

l lu J
ju u l l l l

u ll
jk jj

l lu uK J
jku u u u l l l l

ku lu l
k jk jk j

u u
a a b b a a

u uu u
B c c a a c c a a



  



   





 

 

  
              

  
                 



 
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As soon as the end-point derivatives (qL, qR) are calculated, the upper and lower envelopes are 

determined. The EMD can be effectively conducted.  

5. Example  

A time series of {xi} (Fig. 4) consisting of a quadratic trend and three harmonics,   

           
3

2
0 0 0

1

( ) ( ) ( ),  ( ) ,   ( ) sin( ),     1, 2,3i i k i i i k i k k i k
k

x t f t f t f t A t f t A t k 


                

            1( ),   ( 1) ,   = 0,   =  0.9 s,   = 0.0018 s,   = 501, i i i Nx x t t i t t t t N                   (27) 

is used to demonstrate  the capability of DEMD.   The parameters in (27) are given in Table 1. 

The left panels of Fig.5 show the trend and three harmonics of the data represented by (27):  f0i = 

f0(ti), f1i = f1(ti), f2i = f2(ti), and f3i = f3(ti).  Obviously, only f0(ti) represents the trend of the signal  

{xi}. The trend of {xi} varies from f01 to f0N, 

                                     f01 = 0,                  f0N = 0.405.                                                    (28) 

The DEMD is conducted on the time series {xi} (Fig. 4) to obtain three IMFs and a trend 

(right panels of Fig. 5). Obviously, IMFs well correspond to the harmonics, ci(t) versus fi(t), with 

high CCs (0.978 between c1 and f1, 0.992 between c2 and f2,  0.999 between c3 and f3, 1.0 

between two trends) and low RRMSEs (0.00394 between c1 and f1, 0.0218 between c2 and f2, 

0.00542 between c3 and f3, 0.0184 between the two trends).  

6. Conclusions  

(1) A major difficulty in HHT (i.e., unknown local maximum and minimum at the two 

end-points) has been overcome using DEMD, which is developed on the base of (a) compact 

difference scheme concepts, and (b) minimum temporal variability for the low-frequency 

component (i.e., average of upper and lower envelopes). Determination of either upper or lower 

envelope becomes a well-posed mathematical problem. 
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(2) The DEMD uses hybrid Hermitain polynomials to determine the upper and lower 

envelopes with the first derivatives at the two end-points (qL, qR) as parameters.  A set of two 

algebraic equations for (qL, qR) are derived on the base of minimal integrated absolute value of 

third-order derivative (equivalent to minimal temporal variability). The upper and lower 

envelopes are obtained after the optimal (qL, qR) are determined.  

(3) Capability of the DEMD for eliminating end effect, and detrend uncertainty is 

demonstrated using a time series consisting of a quadratic trend and four harmonics. Numerical 

experiment demonstrates that the new approach could indeed eliminate end effect and detrend 

uncertainty effectively with low RRMSEs. The potential advantage of DEMD over the 

postprocessing approaches is that the sum of all IMFs is always the same as  the original signal 

using the DEMD, and is usually  different from the original signal using the postprocessing 

approaches.  

 (4) The three synthetic sine waves are used as an example to show the capability of DEMD 

since exact components exist for the error estimation. Further justification using real world 

example is needed although it is difficult because exact components are usually unknown.  
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Table 1. Values of parameters used in Eq. (27). 
 
 
 
 
 
  

k  0 3 2 1 
Ak 0.5 1.0 0.5 0.20 
ωk  6π (3 Hz) 40π (20 Hz) 100π (50 Hz) 
φk  0.01 0 0.005 



16 
 

 

 
Fig. 1.   Procedure of traditional EMD. 
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Fig. 2.  Uncertain upper (or lower) envelope at the two end points.
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Fig. 3. Optimal determination of (qL, qR) by minimal temporal variability for the upper 
(or lower) envelope, i.e., minimal integrated square of third derivative (solid curves). 
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Fig. 4.  Time series {xi} represented by Eq(27). 
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Fig. 5.  Components of  time series {xi}: a quadratic trend and four harmonics given by Eq.(27).   
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Fig. 6. .  DEMD on the signal shown in Fig. 5: (a) IMF-1, (b) IMF-2, (c) IMF-3,  and (d) trend. 
Comparison between Fig. 6 and Fig. 5 shows the capability to reduce the end effect and detrend 
uncertainty.  
 
 
 
 


